Selected Solution to Assignment 1

No 34. Use Fubini's theorem to evaluate $\int_0^1 \int_0^3 x e^{xy} dx dy$. Solution. The evaluation is simpler by reversing the order of integration. In fact,

$$\int_{0}^{1} \int_{0}^{3} x e^{xy} dx dy = \int_{0}^{3} \int_{0}^{1} x e^{xy} dy dx$$

$$= \int_{0}^{3} \int_{0}^{1} \frac{d}{dy} e^{xy} dy dx$$

$$= \int_{0}^{3} e^{xy} \Big|_{0}^{1} dx$$

$$= \int_{0}^{3} (e^{x} - 1) dx$$

$$= e^{3} - 4.$$

Supplementary Problems

1. Show that the function $\varphi(x) = 1/x, x \in (0, 1]$, and $\varphi(0) = 1$ is not integrable on [0, 1]. Solution Suppose on the contrary that φ is integrable. For all partitions with small norm ||P||, their associated Riemann sums should come close to the same number

$$I = \int_0^1 \varphi(x) \, dx,$$

regardless of the tags chosen. However, consider an arbitrary partition with tags $\{z_j\}$. The Riemann sum

$$S(\varphi, P) = \sum_{j=1}^{n} \varphi(z_j) \Delta x_j$$
$$= \frac{1}{z_1} \Delta x_1 + \sum_{j=2}^{n} \frac{1}{z_j} \Delta x_j$$
$$\geq \frac{1}{z_1} \Delta x_1 .$$

While $z_j, j \ge 2$ are fixed, if we let z_1 becomes very small, $1/z_1$ becomes very large, so $S(\varphi, P)$ could become arbitrarily large and cannot come close to I. Therefore, φ cannot be integrable.

Note In fact, it can be shown that all unbounded functions are non-integrable.

2. Suppose f is a non-negative function satisfying $\iint_R f(x, y) dA = 0$. Does it imply that f is zero everywhere?

Solution. When f is a non-negative integrable function, $\iint_R f = 0$ does not necessarily imply f is equal to 0 everywhere. For instance, a function which vanishes everywhere except at finitely many points has zero integral. But, it is not the zero function.

Note On the other hand, a non-negative *continuous* function which has zero integral must be the zero function.