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Selected Solution to Assignment 1

No 34. Use Fubini’s theorem to evaluate fol f03 xe™ dxdy.

Solution. The evaluation is simpler by reversing the order of integration. In fact,
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Supplementary Problems

1. Show that the function ¢(z) = 1/z,x € (0,1], and ¢(0) = 1 is not integrable on [0, 1].

Solution Suppose on the contrary that ¢ is integrable. For all partitions with small norm
| P||, their associated Riemann sums should come close to the same number
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regardless of the tags chosen. However, consider an arbitrary partition with tags {z;}.
The Riemann sum
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While 2,7 > 2 are fixed, if we let z; becomes very small, 1/2z; becomes very large, so
S(g, P) could become arbitrarily large and cannot come close to I. Therefore, ¢ cannot
be integrable.

Note In fact, it can be shown that all unbounded functions are non-integrable.
2. Suppose f is a non-negative function satisfying [ f(z,y) dA = 0. Does it imply that f
is zero everywhere?

Solution. When f is a non-negative integrable function, [/ rJ = 0 does not necessarily
imply f is equal to 0 everywhere. For instance, a function which vanishes everywhere
except at finitely many points has zero integral. But, it is not the zero function.

Note On the other hand, a non-negative continuous function which has zero integral must
be the zero function.



